

AS Level Mathematics B (MEI)

H630/01 Pure Mathematics and Mechanics

Question Set 5

Celia states that $n^2 + 2n + 10$ is always odd when n is a prime number.

Prove that Celia's statement is false.

[2]

Fig. 2 shows a quadrilateral ABCD. The lengths AB and BC are 5 cm and 6 cm respectively. The angles ABC, ACD and DAC are 60°, 60° and 75° respectively.

Fig. 2

Calculate the exact value of the length AD.

[4]

3 Fig. 3 shows a triangle PQR. The vector \overrightarrow{PQ} is i+7j and the vector \overrightarrow{QR} is 4i-12j.

2

Fig. 3

(a) Show that the triangle PQR is isosceles.

[3]

(b) Find the position vector of S.

[2]

Fig. 4.1 shows part of the curve $y = x^{\frac{1}{2}}$. P is the point (1, 1) and Q is the point on the curve with x-coordinate 1 + h.

Fig. 4.1

Table 4.2 shows, for different values of h, the coordinates of P, the coordinates of Q, the change in y from P to Q and the gradient of the chord PQ.

x for P	y for P	h	x for Q	y for Q	change in y	gradient PQ
1	1	1				
1	1	0.1	1.1	1.048 809	0.048 809	0.488 088
1	1	0.01	1.01	1.004988	0.004988	0.498756
1	1	0.001	1.001	1.000 500	0.000500	0.499875

Table 4.2

(a) Fill in the missing values for the case h=1 in the copy of Table 4.2 below. Give your answers correct to 6 decimal places where necessary. [1]

x for P	y for P	h	x for Q	y for Q	change in y	gradient PQ
1	1	1				
1	1	0.1	1.1	1.048809	0.048 809	0.488088
1	1	0.01	1.01	1.004988	0.004988	0.498756
1	1	0.001	1.001	1.000500	0.000 500	0.499875

- **(b)** Explain how the sequence of values in the last column of Table 4.2 relates to the gradient of the curve $y = x^{\frac{1}{2}}$ at the point P. [1]
- (c) Use calculus to find the gradient of the curve at the point P.

5 In this question you must show detailed reasoning.

A curve has equation $y = 4x^3 - 6x^2 - 9x + 4$.

- (a) Sketch the gradient function for this curve, clearly indicating the points where the gradient is zero.
- (b) Find the set of values of x for which the gradient function is decreasing. Give your answer using set notation.
 [2]

The point A has coordinates (-1, -2) and the point B has coordinates (7, 4). The perpendicular bisector of AB intersects the line y+2x = k at P.

Determine the coordinates of P in terms of k.

[2]

(a) A student is asked to solve the inequality $x^{\frac{1}{2}} < 4$.

The student argues that $x^{\frac{1}{2}} < 4 \Leftrightarrow x < 16$, so that the solution is $\{x : x < 16\}$.

Comment on the validity of the student's argument. [1]

(b) Solve the inequality
$$\left(\frac{1}{2}\right)^x < 4$$
. [3]

(c) Show that the equation
$$2\log_2(x+8) - \log_2(x+6) = 3$$
 has only one root. [5]

8 In this question you must show detailed reasoning.

Fig. 8 shows part of the graph of $y = x^2 + \frac{1}{x^2}$.

Fig. 8

The tangent to the curve $y = x^2 + \frac{1}{x^2}$ at the point $(2, \frac{17}{4})$ meets the *x*-axis at A and meets the *y*-axis at B. O is the origin.

[6]

- (a) Find the exact area of the triangle OAB.
- (b) Use calculus to prove that the complete curve has two minimum points and no maximum point.
 [6]

Total Marks for Question Set 5: 49 marks

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

University of Cambridge